CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the March 2016 series

9701 CHEMISTRY

9701/33

Paper 3 (Advanced Practical Skills), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE[®] and Cambridge International A and AS Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

-	Page 2	O a such as indexed to the such	Mark Scheme		Syllab	ous Pa	iper
		Cambridge Interna	ational AS/A Le	vel – March 2016	970	1 3	33
C	question		indicative ma	terial		mark	total
1	(a) I All thermometer readings and mass of FA 2 recorded. Do not award if mass of FA 2 > 0.50 g.			1	[4]		
		II All temperatures record	led to 0.5 °C.			1	
	Award III and IV if within ranges given of supervisor's value.			2			
		supervisor's ∆T/°C	III	IV			
		≥ 46.0	± 5.0	± 2.5			
		36.0–45.5	± 4.0	± 2.0			
		26.0–35.5	± 3.0	± 1.5			
		16.0–25.5	± 2.0	± 1.0			
		6.0–15.5	± 1.0	± 0.5			
		< 6.0	± 0.5	_			
	(b) I Axes labelled with units and uniform scale chosen to use more than half of each axis including 10 °C above the highest recorded temperature.				re than half erature.	1	[4]
		II All recorded points plo	tted (minimum 9).		1	
		 III Appropriate lines of be best fit lines must Points not on the fit line and any po 	est fit drawn: be or a smooth line must be bal oints ringed or lal	curve; anced on either side pelled as anomalous	of the best- ignored.	1	
		IV Lines extrapolated and graph.	d correct value (v	within 0.5 °C) of ΔT re	ad from	1	
	(c) (i)	Correctly calculates Q =	$25 \times 4.2 \times \Delta T$ from	vm (b) .		1	[3]
	(ii)	Correct expression for va = $\frac{-(c)(i) \times 24.3}{mass in (a) \times 1000}$ (ign	alue of enthalpy on ore sign)	change		1	
		Negative sign and both a rounding to 1 sig. fig. dur	answers recorded ing calculation (d to 2–4 sig. fig. and unless exact value).	no	1	
	(d)	Incorrect, as the acid was	s in excess alrea	dy.		1	[1]
	(e)	 Any one from: use lid or use spectron or convection or convection or convection or convection accurately calibrated or be accurately calibrated or use magnesium to there is heat loss use lid or plastic or convection or convecti	ecified extra insu iduction); urette for FA 1 to ited (owtte); urnings/powder while magnesiu cup with higher v	ation to reduce heat o reduce % error/as so reaction complete m ribbon is still reacti valls to reduce acid s	losses (by more sooner as ng; pray;	1	[1]

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9701	33

question	indicative material	mark	total
2 (a)	I Initial and final burette readings and volume added recorded for rough titre and accurate titre details tabulated.	1	[7]
	 II Initial and final burette readings recorded and volume of FA 4 added recorded for each accurate titration. All headings and units correct for accurate titrations: initial/final (burette) reading/volume or reading/volume at start/finish volume/FA 4 added/used or titre (cm³) or/cm³ or in cm³ or cm³ by every entry. 	1	
	III All accurate burette readings are recorded to the nearest 0.05 cm ³ .	1	
	IV Has two uncorrected, accurate titres within 0.1cm^3 .	1	
	V , VI and VII Award V , VI and VII for $\delta \le 0.20 \text{ cm}^3$ Award V and VI for 0.20 cm ³ < $\delta \le 0.30 \text{ cm}^3$ Award V for 0.30 cm ³ < $\delta \le 0.50 \text{ cm}^3$		
(b)	Mean titre correctly calculated from clearly selected values.	1	[1]
	 Candidates must average two (or more) titres where the total spread is ≤ 0.20 cm³. Working must be shown or ticks must be put next to the two (or more) accurate readings selected. The mean should normally be quoted to 2 d.p. rounded to the nearest 0.01. 		
	Note: the candidate's mean will sometimes be marked as correct even if it is different from the mean calculated by the examiner for the purpose of assessing accuracy.		
(c)(i)(ii)	Correctly calculates $\frac{0.100 \times (b)}{1000}$	1	[5]
	(ii) = (i)		
(iii)	Correct expression $\frac{(c)(ii) \times 1000 \times 10}{25}$	1	
(iv)	mol Mg = mass in 1(a) /24.3 and mol HC/= (c)(iii) × 25/1000	1	
	mol HC $l > 2 \times$ mol Mg (owtte) so the statement is correct. Allow ecf from incorrect (iii).	1	
	Final answers (i), (ii) and (iii) to 3 or 4 sig. fig. and no rounding errors.	1	

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9701	33

question	indicative material	mark	total
(d)	Correct expression $\frac{0.1 \times 100}{(b)}$ and answer to minimum 2 sig. fig./correct answer to minimum 2 sig.fig. and FA 3 (is measured more accurately). Allow ecf from (b) > 41.67 cm ³ then FA 4 (is measured more accurately).	1	[1]

test observations		tions
	FA 5	FA 6
NaOH	no reaction/no change/no ppt	white ppt, soluble in excess
NH ₃	no reaction/no change/no ppt	white ppt, insoluble in excess
HC <i>l</i> (warm)	blue solution brown gas/gas turning brown/ gas turns blue litmus red/bleaches	no reaction / no change
H ⁺ /MnO ₄ ⁻	decolourises/purple to colourless or (solution) stays colourless	stays purple/pink or changes to purple/pink
Ba ²⁺ /HC1	no reaction/no change/no ppt	white ppt, insoluble in HC <i>l</i>

question	indicative material	mark	total
	FA 5 is NaNO ₂ ; FA 6 is Al ₂ (SO ₄) ₃ ; FA 7 is Na ₂ SO ₃ (Na ₂ S ₂ O ₅)		
3 (a)	Observations fully correct for both FA 5 and FA6 for NaOH.	1	[8]
	Observations fully correct for both FA 5 and FA6 for NH_3 .	1	
	Observation of blue solution or brown gas with FA 5 and no reaction with FA 6 for HC <i>1</i> .	1	
	Observations fully correct for both FA 5 and FA6 for H^+/MnO_4^- .	1	
	Observations fully correct for both FA 5 and FA6 for Ba ²⁺ /HC1.	1	
	Cations: FA 5 unknown and FA 6 A <i>l</i> ³⁺ /aluminium Anions: FA 5 NO ₂ ⁻ /nitrite FA 6 SO ₄ ²⁻ /sulfate	1 1 1	

Page 5	Mark Scheme S Cambridge International AS/A Level – March 2016	Syllabus 9701	Pa 3	per 3
question	indicative material	m	ark	total
(b) (i)	(Warm with) Al and NaOH and test gas with (damp) red litmus paper		1	[5]
	No reaction and not nitrate/N/same element as FA 5 .		1	
(ii)	BaCl ₂ /Ba(NO ₃) ₂ and HCl/HNO ₃ or H ⁺ /KMnO ₄ /acidified potassium manganate(VII) or any named acid, (warm) and test gas with H ⁺ /KMnO ₄ . Ba ²⁺ and acid: white ppt, soluble in acid or H ⁺ /MnO ₄ -: solution decolourises/purple to colourless or acid and test gas with H ⁺ /KMnO ₄ : gas (evolved with acid) which		1	
	FA 7 contains sulfite/SO $_3^{2}$		1	